ABOUT TSUNAMI
A tsunami can be generated when converging or destructive plate boundaries abruptly move and vertically displace the overlying water. It is very unlikely that they can form at divergent (constructive) or conservative plate boundaries. This is because constructive or conservative boundaries do not generally disturb the vertical displacement of the water column. Subduction zone related earthquakes generate the majority of all tsunamis.
Tsunamis have a small amplitude (wave height) offshore, and a very long wavelength (often hundreds of kilometers long), which is why they generally pass unnoticed at sea, forming only a slight swell usually about 300 mm above the normal sea surface. They grow in height when they reach shallower water, in a "shoaling" process described below. A tsunami can occur at any state of the tide and even at low tide will still inundate coastal areas if the incoming waves surge high enough.
On April 1, 1946 a Magnitude 7.8 (Richter Scale) earthquake occurred near the Aleutian Islands, Alaska. It generated a tsunami which inundated Hilo on the island of Hawai'i with a 14 m high surge. The area where the earthquake occurred is where the Pacific Ocean floor is subducting (or being pushed downwards) under Alaska.
Examples of tsunami being generated at locations away from convergent boundaries include Storegga during the Neolithic era, Grand Banks 1929, Papua New Guinea 1998 (Tappin, 2001). In the case of the Grand Banks and Papua New Guinea tsunamis an earthquake caused sediments to become unstable and subsequently fail. These slumped and as they flowed down slope a tsunami was generated. These tsunami did not travel transoceanic distances.
It is not known what caused the Storegga sediments to fail. It may have been due to overloading of the sediments causing them to become unstable and they then failed solely as a result of being overloaded. It is also possible that an earthquake caused the sediments to become unstable and then fail. Another theory is that a release of gas hydrates (methane etc.,) caused the slump.
The "Great Chilean earthquake" (19:11 hrs UTC) May 22, 1960 (9.5 Mw), the March 27, 1964 "Good Friday earthquake" Alaska 1964 (9.2 Mw), and the "Great Sumatra-Andaman earthquake" (00:58:53 UTC) December 26, 2004 (9.2 Mw), are recent examples of powerful megathrust earthquakes that generated a tsunami that was able to cross oceans. Smaller (4.2 Mw) earthquakes in Japan can trigger tsunami that can devastate nearby coasts within 15 minutes or less.
In the 1950s it was hypothesised that larger tsunamis than had previously been believed possible may be caused by landslides, explosive volcanic action e.g., Santorini, Krakatau, and impact events when they contact water. These phenomena rapidly displace large volumes of water, as energy from falling debris or expansion is transferred to the water into which the debris falls at a rate faster than the ocean water can absorb it. They have been named by the media as "mega-tsunami."
Tsunami caused by these mechanisms, unlike the trans-oceanic tsunami caused by some earthquakes, may dissipate quickly and rarely affect coastlines distant from the source due to the small area of sea affected. These events can give rise to much larger local shock waves (solitons), such as the landslide at the head of Lituya Bay 1958, which produced a wave with an initial surge estimated at 524 m. However, an extremely large gravitational landslide might generate a so called "mega-tsunami" that may have the ability to travel trans-oceanic distances. This though is strongly debated and there is no actual geological evidence to support this hypothesis.
Characteristics
ATsunami hazard sign at Bamfield, British Columbia.
Tsunami wall at Tsu, Japan
A tsunami cannot be prevented or precisely predicted—even if the right magnitude of an earthquake occurs in the right location. Geologists, Oceanographers and Seismologist analyse each earthquake and based upon many factors may or may not issue a tsunami warning. However, there are some warning signs of an impending tsunami, and there are many systems being developed and in use to reduce the damage from tsunami. One of the most important systems that is used and constantly monitored are bottom pressure sensors. These are anchored and attached to buoys. Sensors on the equipment constantly monitor the pressure of the overlying water column—this can be deduced by the simple calculation of:
whereP = the overlying pressure in Newtons per metre square,ρ = the density of the seawater= 1.1 x 103 kg/m3,g = the acceleration due to gravity= 9.8 m/s2 andh = the height of the water column in metres.
Hence for a water column of 5,000 m depth the overlying pressure is equal toor about 5.7 Million tonnes per metre square.
In instances where the leading edge of the tsunami wave is the trough, the sea will recede from the coast half of the wave's period before the wave's arrival. If the slope of the coastal seabed is shallow, this recession can exceed many hundreds of meters. People unaware of the danger may remain at or near the shore out of curiosity, or for collecting fish from the exposed seabed. During the Indian Ocean tsunami of December 26, 2004, the sea withdrew and many people then went onto the exposed sea bed to investigate. Pictures taken show people on the normally submerged areas with the advancing wave in the background. Most people who were on the beach were unable to escape to high ground and died.
Langganan:
Posting Komentar (Atom)

0 komentar:
Posting Komentar